首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
地球物理   5篇
地质学   12篇
天文学   1篇
自然地理   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 343 毫秒
11.
Acta Geotechnica - Cemented granular materials are abundant in nature and are often artificially produced. Their macroscopic behaviour is driven by small-scale material processes, which are...  相似文献   
12.
A simple and accurate method to determine fluorine and chlorine contents in small amounts (∼ 30 mg) in rock has been developed using ion chromatography after extraction by alkaline fusion. Powdered sample was mixed with sodium carbonate and zinc oxide at a mass ratio of 1:3:1, and was fused in an electric furnace at 900 °C for 30-40 minutes. An aqueous solution obtained by dissolving the fused silicate rock was diluted to the appropriate concentration of sodium carbonate (< ∼ 24 mmol l-1) to minimise the tailing effect on F- during ion chromatography caused by the large amount of carbonate species originating from the flux. Fluorine and chlorine contents were then determined by a standard additions method. Based on the relative standard deviation of the backgrounds, detection limits of both fluorine and chlorine were ∼ 4 μg g-1, when 30 mg test portions were fused and diluted by a factor of 1200. We also report new fluorine and chlorine contents in nine GSJ (Geological Survey of Japan) reference materials, including peridotite (JP-1), granite (JG-1a), basalts (JB-1b, 2 and 3), andesites (JA-1 and 2) and rhyolites (JR-1 and 2). Fluorine and chlorine contents in the reference materials in this study were consistent with previously reported values. Reproducibilities were < 10 % for samples with F and Cl concentrations of > 20 μg g-1 and < 20 % with F and Cl < 20 μg g-1.  相似文献   
13.
Although hillslope evolution has been subject to much investigation for more than a century, the effect of climate on the morphology of soil‐mantled hillslopes remains poorly constrained. In this study, we perform numerical simulations of volcanic cinder cones in the Golan Heights (eastern Mediterranean) to estimate soil transport efficiency across a significant north–south gradient in mean annual precipitation (1100 to 500 mm). We use the initial cinder cone morphology (constrained by stratigraphy), the modern hillslope form (surveyed with sub‐meter accuracy) and the eruption age (based on 40Ar–39Ar chronology) to predict the best‐fit value of the soil transport coefficient (‘diffusivity’) based on a nonlinear transport model. Our results indicate that the best‐fit diffusivity (K ) varies from 1 to 6 m2 ka?1 among the five cinder cones in our field area. Diffusivity (K ) values vary systematically with precipitation and hillslope aspect; specifically, K is higher on south‐facing (drier) hillslopes and decreases with mean annual precipitation. We interpret this climate dependency to reflect vegetation‐driven variations in apparent soil cohesion, which increases with root network density, and attenuation of rain splash and overland flow erosion, which increases with vegetative ground cover. To assess how vegetative root mass and ground cover vary with precipitation and aspect, we quantified the spatial distribution of NDVI (normalized difference vegetation index) from ASTER satellite images and observed spatial variations that correlate with our calibrated values of K . Analysis of previously studied cinder cones in the USA can be used to extend our framework to arid domains. This endeavor suggests a humped relationship between K and precipitation with maximum diffusivity at mean annual precipitation of 400–600 mm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
14.
Global eustatic lowstands can expose vast areas of continental shelves, and occasionally the shelf edge and the continental slope. The degree of fluvial connectivity to receding shores influences the redistribution of sediments across these emerging landscapes. Shelf and slope emergence in the Dead Sea since the middle of the 20th century, offers a rare opportunity to examine evolution of stream connectivity in response to continuous base-level decline. We characterize the connectivity evolution of two streams, using high-resolution time series of aerial imagery and elevation models, field mapping, and grain-size analyses. Our rich spatiotemporal dataset of evolving channel geomorphology, sediment transport conditions, and sediment redistribution, allows calculating potential coarse sediment mobility in response to base level decline. Following shelf emergence, alluvial fans first prograded onto the low-gradient shelf under unfavourable conditions for transporting coarse sediment to the regressing shoreline. Then, with shelf and slope emergence, the two adjacent streams evolved differently. The smaller, more arid watershed still maintains its highstand delta progradation on the shelf and is practically disconnected from the receding lake. The larger catchment, heading in wetter environments and having a narrower shelf, has incised the shelf and renewed and gradually intensified the sediment transport from the highstand to the lowstand delta. Sediment mobilization to lowstand shorelines is controlled by the evolution of the channel profile and by the average speed of gravel transport (10s-100s m yr-1). These findings from the Dead Sea are relevant to fluvial processes operating on continental shelves during glacial maxima. Streams would have commonly stored high proportions of their coarse sediment on the continental shelves rather than efficiently connecting with the lowstand level. Additionally, differences in sediment routing patterns should exist among nearby streams, primarily due to continental margin geometry and watershed hydrology. © 2019 John Wiley & Sons, Ltd.  相似文献   
15.
16.
The development of a new constitutive model would normally require a new procedure to be established for derivation of the incremental response. However, for models generated within the framework of hyperplasticity (using single, multiple or continuous yield surfaces), this derivation can be carried out using standard procedures. In this paper we present first the unified incremental response for a model using a single internal variable for general loading conditions. Next, we develop and explore three different numerical techniques for implementation of this procedure. One of the approaches, which seems superior, is extended to the multi‐surface hyperplastic formulation. Finally, to allow integration of continuous hyperplastic models within the same multi‐surface hyperplastic setting, the issue of discretization of the continuous field of yield surfaces is addressed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
17.
A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 × 5 μm2) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.  相似文献   
18.
Continuous core sediments (to a depth of 90.1 m) taken at a transitional area of Holocene and Pleistocene deposits in Sonargaon, Bangladesh were characterized for their mineralogy and chemistry. Among the sediments of the lower part of the Holocene aquifer (depth: 18–29 m), where most domestic wells are installed, As is mostly fixed in biotite and organic phases. A positive correlation of As concentration with those of Al and Fe but not that of total organic C clearly suggests that biotite is a primary source of As. Although microbial reduction–dissolution of As-containing Fe oxyhydroxides is thought to cause As-enriched groundwater in the Ganges–Brahmaputra–Meghna delta plain, the authors conclude that chemical weathering of biotite is the primary formation mechanism and prevailing reducing conditions contribute to the expansion of As-enriched groundwater in the study area.  相似文献   
19.
The dramatic lake level drop of the Dead Sea during the twentieth century ( 30 m) provides a field-scale experiment in transport-limited incision of gravel-bed channels in response to quasi-continuous base level fall at approximately constant rate. We apply a one-dimensional numerical incision model based on a linear diffusion equation to seven ephemeral channels draining into the Dead Sea. The model inputs include the measured twentieth century lake level curve, annual shoreline location (i.e., annual channel lengthening following the lake level drop), reconstructed longitudinal profiles of each of the channels based on mapped and surveyed terraces, and the current profiles of the active channels. The model parameters included the diffusion coefficient and the upstream-derived sediment flux. Both were first calibrated using a set of longitudinal profiles of known ages and then validated using additional sets of longitudinal profiles.The maximum at-station total incision observed at each of the studied channels was significantly less then the total lake level drop and varied in response to both drainage area and lake bathymetry. The model applied predicted degradation rates and the pattern of degradation with high accuracy. This suggests that sediment flux in the modeled channels is indeed linearly dependent on slope. Further support for this linear dependency is provided by a linear correlation between the diffusion coefficient and the mean annual rain volume over each basin (a proxy for discharge). The model presented could be a valuable tool for planning in rapid base level fall environments where incision may risk infrastructure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号